
Коллектив Научно-исследовательского института прикладного искусственного интеллекта и цифровых решений РЭУ имени Г.В. Плеханова под руководством директора Центра, члена-корреспондента РАН Александра Храмова доказал теоретически и экспериментально, что этими состояниями можно эффективно управлять, используя адаптивные связи высоких порядков.
В отличие от традиционных моделей, где учитываются только попарные взаимодействия, связи высоких порядков описывают групповое влияние, когда на элемент сети одновременно воздействуют три и более других элемента. Именно такие взаимодействия часто встречаются в реальности — от принятия групповых решений в социуме до кооперативных процессов в биологических нейронных ансамблях. Результаты работы, посвященной управлению химерными (неоднородными) состояниями в сетях с адаптивными связями высоких порядков, опубликованы в международном научном журнале Chaos. An Interdisciplinary Journal of Nonlinear Science. Адаптивность означает, что сила связей в сети может динамически меняться в зависимости от текущего состояния всей системы. Это приближает модель к реальным биологическим и технологическим процессам. Проведя масштабное компьютерное моделирование сети осцилляторов (индикаторов) Курамото (математической модели, которая описывает поведение большого набора связанных осцилляторов), исследователи выявили, что адаптация связей позволяет гибко переключать режимы работы сети: Индуцировать химерное состояние из полностью синхронного. Полностью синхронизировать сеть, подавив химерное состояние. Формировать устойчивые двухкластерные режимы с противофазной синхронизацией. Особенно перспективной для практического применения оказалась архитектура сети типа «мир тесен» (small-world), в которой химерные состояния наблюдаются в более широком диапазоне параметров, что повышает устойчивость управления. Фундаментальное открытие открывает пути к созданию новых технологий в различных областях: Нейротехнологии: понимание механизмов контроля синхронизации может помочь в разработке методов лечения нейродегенеративных заболеваний и эпилепсии; Искусственный интеллект: принципы адаптивных сетей могут быть использованы для создания новых архитектур нейросетей и более эффективных систем резервуарных вычислений; Киберфизические системы: полученные результаты могут быть применены для повышения отказоустойчивости и гибкого управления в распределенных системах, таких как «умные» города, роевой интеллект или сети датчиков. «Мы продемонстрировали, что адаптация связей высоких порядков служит мощным инструментом для целенаправленного конструирования динамических режимов в сложных сетях. Это открывает возможность не просто предсказывать, а активно формировать коллективное поведение сложных многокомпонентных систем», — отмечает один из авторов работы, ведущий научный сотрудник Научно-исследовательского института прикладного искусственного интеллекта и цифровых решений РЭУ имени Г.В. Плеханова Андрей Андреев.
Свежие комментарии