Статья опубликована в журнале «Вестник ПНИПУ. Машиностроение, материаловедение». Ключевое преимущество стали 14Х17Н2 – сочетание высокой прочности, устойчивости к коррозии и ударным нагрузкам. Благодаря этим свойствам ее также применяют в мостовых конструкциях для опорных узлов, в химических реакторах для деталей и разных отраслях, где приходится контактировать с кислотами.
Несмотря на все это, одной из главных причин поломок оборудования, работающего в агрессивной среде, по-прежнему остается сероводородная коррозия, приводящая к хрупким трещинам и разрушению. Особенно опасно сульфидное коррозионное растрескивание под напряжением – когда сталь разрушается одновременно из-за нагрузки и «отравления» сероводородом. Этот процесс может вызвать внезапное разрушение деталей. – Раньше считалось, что для коррозионной защиты материала в H2S среде достаточно контролировать его твердость в процессе изготовления. Однако практика показала, что даже при соблюдении этого требования сталь 14Х17Н2 проявляет склонность к растрескиванию. Для повышения устойчивости к сульфидной коррозии ее подвергают специальной термообработке, режимы которой изначально зависят от цели. Так, процесс закалки подразумевает сильный нагрев и быстрое охлаждение в масле, что делает сталь очень твердой, но хрупкой (как стекло). Отпуск – это повторный, но не такой сильный нагрев и такое же быстрое охлаждение в масле. Он смягчает структуру материала после закалки, – объясняет Андрей Кравченко, аспирант кафедры «Металловедение и термическая обработка металлов» ПНИПУ, начальник отдела технического контроля АО «ЭЛКАМ-нефтемаш». Ученые Пермского Политеха и «ЭЛКАМ-Нефтемаш» провели серию экспериментов с разными режимами термической обработки образцов стали 14Х17Н2 и изучили, как меняются ее структура, механические свойства и стойкость к разрушению. Для этого испытали пять режимов, включая сложные многоступенчатые процессы с закалкой и отпуском. – Мы проанализировали сталь после термообработки и выяснили, что главный секрет успешной устойчивости к коррозии — формирование особой микроструктуры стали: однородной матрицы с равномерно распределенными крупными карбидами (частицами). Образцы проверяли по международным стандартам – держали под напряжением 182 МПа (мегапаскалей) в растворе, предельно насыщенном сероводородом. Простое снижение твердости (режим № 2) не помогло, материал разрушается через 120 часов. Лучшие показатели у образцов после сложных режимов № 3 и 4. Они выдержали 720 часов испытаний без серьезного урона, – рассказывает Юрий Симонов, профессор, заведующий кафедрой «Металловедение и термическая обработка металлов» ПНИПУ, доктор технических наук. Исследование показало, что для защиты стали от сульфидной коррозии важно не просто соблюдать требования по уровню твердости, а осторожно подбирать режимы термообработки, чтобы добиться оптимальной структуры с крупными частицами. Такая сталь выдерживает даже предельно агрессивные среды, что критически важно в нефтяной, химической и металлургической отраслях. Метод термообработки, созданный учеными ПНИПУ совместно с инженерами «ЭЛКАМ-нефтемаш», уже готов к внедрению в серийное производство насосов и другого оборудования для работы в сложных условиях. В перспективе это поможет увеличить срок службы деталей, снизить аварийность в нефтедобыче и иных видах промышленности, а также адаптировать метод для других марок сталей.
Свежие комментарии