На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Поболтаем

52 187 подписчиков

Свежие комментарии

  • Акимова Татьяна
    Гросси-американский шпион, которому доверять нельзя!!!Глава МАГАТЭ приз...
  • Акимова Татьяна
    На кой черт нужен этот шпион Гросси?Глава МАГАТЭ выра...
  • Акимова Татьяна
    В Питере тоже надо делать.И у больниц тоже, а то везде парковки платные при Беглове.В Москве хотят ув...

Петербургские ученые создали нейросеть для определения уровня углерода в морской воде

Результаты исследования, полученные в рамках подготовки выпускной квалификационной работы магистрантки программы «Физическая океанография и биопродуктивность океанов и морей (ФОБОС)», опубликованы в научном журнале Oceanology.   Морские растения поглощают растворенный в воде углекислый газ в процессе фотосинтеза, а после отмирания способствуют его долгосрочному хранению в глубинных слоях океана.

Это помогает снижать парниковый эффект, поскольку Мировой океан поглощает около 25% антропогенных выбросов диоксида углерода. Однако избыток углерода приводит к закислению водоемов, что разрушает кораллы и раковины, а разложение органики снижает уровень кислорода в придонных слоях, создавая «мёртвые зоны». Балтийское море, будучи мелководным и замкнутым, особенно подвержено этим процессам. Обилие речного стока и слабый водообмен с океаном провоцируют бурное развитие — «цветение» — цианобактерий, которые усиливают поглощение углерода, но также ухудшают качество воды и расширяют области с дефицитом кислорода. Это угрожает экосистеме, делая её уязвимой к дальнейшим климатическим изменениям. Для измерения углекислого газа в воде океанологи используют показатель парциального давления (pCO₂) — того давления, которое создавал бы газ, если бы он один занимал весь объём. В океанологии этот параметр показывает, насколько вода насыщена CO₂ по сравнению с атмосферой. Специалисты Санкт-Петербургского университета проанализировали данные о параметрах среды, влияющих на концентрацию углекислого газа и построили модель для оценки парциального давления с использованием искусственного интеллекта. Для нейросети использовали показатели освещенности, температуры и солености водоема, а также глубину перемешанного слоя, взятые из открытой базы экспедиционных данных SOCAT, а также со спутников. «Мы создали карты парциального давления для поверхностного слоя всего Балтийского моря, используя реальные измерения параметров воды. Такие карты позволяют точнее оценить параметр в районах с редкими замерами — например, у берегов заливов или в прибрежных зонах в осенне-зимний период. Наша модель дает реалистичные показатели, подтвержденные спутниковыми и модельными данными», — пояснила доцент кафедры океанологии СПбГУ, лектор российского общества «Знание» Полина Лобанова. Как отметила выпускница Санкт-Петербургского университета Софья Кузьмина, машинное обучение использует два типа данных: тренировочные и тестовые. Первые учат модель определять, каким значениям pCO₂ соответствуют заданные параметры. Например, при понижении температуры воды парциальное давление может возрасти, поскольку растворимость газа увеличивается. Алгоритм запоминает эту зависимость и анализирует её в сочетании с другими факторами, чтобы эффективно использовать в дальнейшем. Затем модель проверили на тестовой выборке, где она самостоятельно предсказала значения парициального давления на основе новых параметров. Учёные сравнили её расчёты с реальными экспедиционными данными, полученными в Балтийском море и подтвердили корректность системы. «Мы применяем многослойный перцептрон — нейронную сеть, которая прогнозирует pCO₂, используя несколько скрытых уровней принятия решений. На каждом этапе учитывается вклад различных параметров, что позволяет избежать переобучения, обычно необходимого для таких моделей и получить объективную оценку», — добавила Софья Кузьмина. В исследовании также описаны многолетние и сезонные колебания pCO₂ в Балтийском море, эти результаты согласуются с предыдущими работами, что подтверждает корректность модели.

 

Ссылка на первоисточник
наверх